1. Ainslie, George. "Précis of breakdown of will." Behavioral and Brain Sciences 28.5 (2005): 635-649. [link] 

  2. Atkeson, Christopher . "What advice would I give a starting graduate student interested in robot learning?." (2020). [link]

  3. Halmos, Paul R. "How to write mathematics." Enseign. Math16.2 (1970): 123-152. [link]

  4. Simon, Herbert A., et al. "Decision making and problem solving." Interfaces 17.5 (1987): 11-31. [link]

  5. Hooker, Sara. "The Hardware Lottery." arXiv preprint arXiv:2009.06489 (2020). [link]


  1. Sola, Joan, Jeremie Deray, and Dinesh Atchuthan. "A micro Lie theory for state estimation in robotics." arXiv preprint arXiv:1812.01537 (2018). [link]

  2. Hindi, Haitham. "A tutorial on convex optimization." Proceedings of the 2004 American Control Conference. Vol. 4. IEEE, 2004. [link]

  3. Hindi, Haitham. "A tutorial on convex optimization II: duality and interior point methods." American Control Conference. IEEE, 2006. [link]


  1. Featherstone, Roy, and David Orin. "Robot dynamics: equations and algorithms." Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE, 2000. [link]

  2. Murray, Richard M., and Sosale Shankara Sastry. "Nonholonomic motion planning: Steering using sinusoids." IEEE transactions on Automatic Control 38.5 (1993): 700-716. [link]

  3. Stewart, David E. "Rigid-body dynamics with friction and impact." SIAM review 42.1 (2000): 3-39. [link]

  4. Wieber, P-B. "Holonomy and nonholonomy in the dynamics of articulated motion." Fast motions in biomechanics and robotics. Springer, Berlin, Heidelberg, 2006. 411-425. [link]

  5. Marsden, Jerrold E., and Jim Ostrowski. "Symmetries in motion: Geometric foundations of motion control." (1998): 3-19. [link]


  1. Sussmann, Héctor J., and Guoqing Tang. "Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control." Rutgers Center for Systems and Control Technical Report 10 (1991): 1-71. [link]


  1. Murray, Richard M., et al. A mathematical introduction to robotic manipulation. CRC press, 1994. [link]

  2. Liberzon, Daniel. Calculus of variations and optimal control theory: a concise introduction. Princeton University Press, 2011. [link]

  3. Nocedal, Jorge, and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006. [link]

  4. Strang, Gilbert. Linear algebra and learning from data. Wellesley-Cambridge Press, 2019. [link]

  5. Başar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. Society for Industrial and Applied Mathematics, 1998. [link]

  6. Bryant, Randal E., O'Hallaron David Richard, and O'Hallaron David Richard. Computer systems: a programmer's perspective. Upper Saddle River: Prentice Hall, 2003. [link]